Getting more out of your biodiversity data with life-history strategies: a fresh approach to causally link species and their habitat

Wilco Verberk

Radboud Universiteit Nijmegen

Department of Animal Ecology and Ecophysiology

agriculture, nature and food quality

survival plan woodland + nature

Rewetting bog remnants Degradation Results from rewetting

Unraveling species-environment relationships Correlations Species traits

Life-history strategies Development Rationale

Applying Life-history strategies Field data Applied ecology (rewetting)

Getting more out of your biodiversity data with life-history strategies

Environment

Species

Rewetting bog remnants Degradation Results from rewetting

Unraveling species-environment relationships Correlations Species traits

Life-history strategies Development Rationale

Applying Life-history strategies Field data Applied ecology (rewetting)

Getting more out of your biodiversity data with life-history strategies

Rewetting of bog remnants

Strongly degraded peat cutting (desiccation, loss of area) eutrophication (intensive agriculture, decomposition)

Peatcutting

Eutrophication

Degradation of bog remnants

Uniform landscapes lacking variation

Restoration measures

Retention of rainwater Decrease drainage

Comparative studies

Degraded bogremnants (NL) no restoration measures taken rewetting

Pristine bog landscapes (Est)

Many different systematic groups: Platwormen (Tricladida) Bloedzuigers (Hirudinea) Borstelwormen (Oligochaeta) Waterkevers (Coleoptera) Waterwantsen (Hemiptera) Libellen (Odonata) Haften (Ephemeroptera) Steenvliegen (Plecoptera) Dansmuggen (Diptera: Chironomidae) Meniscusmuggen (Diptera: Dixidae) Pluimmuggen (Diptera: Chaoboridae) Steekmuggen (Diptera: Culicidae) Kokerjuffers (Trichoptera) Waterspin (Argyroneta aquatica) Waterpissebed (Asellus aquaticus)

Comparative studies

Relict populations present

Case study Korenburgerveen

45 waterbodies sampled

- spring & autumn
- before and after measures took effect

209 samples

>145.000 individuals
>267 taxa

Case study Korenburgerveen

Comparative studies

More of the same after rewetting

Comparative studies

More of the same after rewetting

Rewetting bog remnants Degradation Results from rewetting

Unraveling species-environment relationships Correlations Species traits

Life-history strategies Development Rationale

Applying Life-history strategies Field data Applied ecology (rewetting)

Getting more out of your biodiversity data with life-history strategies

Unraveling species-environment relationships

Two approaches Single species - mechanistic - experiments

Communities - descriptive - surveys

Community ecology: General rules to explain patterns in the distribution of species

Watt (1971): 'If we do not develop a strong theoretical core that will bring all parts of ecology back together, we shall all be washed out to sea in an immense tide of unrelated information'.

Higher plants~1,400 species Animals ~ 24,000 species

Previous analyses incorporating species traits

Difficulties:

A posteriori Ad hoc explanations Predictions performed poorly

Relationships among traits Averaging out Alternative suites

Explanation for patterns in species occurrence?

Rewetting bog remnants Degradation Results from rewetting

Unraveling species-environment relationships Correlations Species traits

Life-history strategies Development Rationale

Applying Life-history strategies Field data Applied ecology (rewetting)

Getting more out of your biodiversity data with life-history strategies

Life-history strategies - a fresh approach

Start from species traits

Define functionally equivalent groups *a priori* based on trait combinations

Life-history strategies: "sets of co-evolved traits which enable a species to deal with a range of ecological problems."

Stearns (1976) Quarterly Review of Biology 51: 3-47.

Test theoretically defined groups with empirical data.

Consider multiple traits acting in concert

- -Relationships among traits (trade-offs and spin-offs)
- -Investment in traits

Trade-off Investments in one trait \rightarrow less resources for another trait.

Growth and development Egg size and egg number

Trade-off Investments in one trait \rightarrow less resources for another trait.

Growth and development Egg size and egg number

Spinn-off

Investments in one trait \rightarrow increases benefits or lowers costs for another

Few eggs and brood care Gills in damselflies for respiration and locomotion

Consider multiple traits acting in concert

- -Relationships among traits (trade-offs and spin-offs)
- -Investment in traits

Function of traits and combinations of traits -In light of other traits of a species -Relative differences (similar body plan) -Alternative suites (different body plan)

Different traits combinations may be functionally similar

- Egg protection:
- endophytical oviposition

Different traits combinations may be functionally similar

Egg protection:

- endophytical oviposition
- gelatinous matrix

Different traits combinations may be functionally similar

Egg protection:

- endophytical oviposition
- gelatinous matrix
- brood care

Different traits combinations may be functionally similar

Egg protection:

- endophytical oviposition
- gelatinous matrix
- brood care
- ovoviviparous

Different traits combinations may be functionally similar

Egg protection:

- endophytical oviposition
- gelatinous matrix
- brood care
- ovoviviparous

www.korion.com.ar

Considering multiple traits acting in concert Function of traits and combinations of traits

13 life-history strategies

Rewetting bog remnants Degradation Results from rewetting

Unraveling species-environment relationships Correlations Species traits

Life-history strategies Development Rationale

Applying Life-history strategies Field data Applied ecology (rewetting)

Getting more out of your biodiversity data with life-history strategies

Applying life-history strategies to field data

45 waters sampled

>145.000 individuals >267 taxa

Applying life-history strategies to field data

Functional classification spanning different systematic groups

						L	ife-his	tory s	trategy	/				
Systematic group	Total	D1	D2	D3	S1	S2	S3	S4	R1	R2	R3	R4	T1	T2
Arachnida	1 (1)												1	
Coleoptera	86 (7)	22			2	8	22		19				12	1
Crustacea	1 (1)										1			
Diptera	64 (6)	15		9	13	6			2				19	
Ephemeroptera	1 (1)		1											
Hemiptera	20 (4)	6		3					7				4	
Hirudinea	6 (3)							2		2	2			
Megaloptera	1 (1)												1	
Odonata	15 (4)		3		2	4							6	
Oligochaeta	23 (3)							9				8		6
Plecoptera	1 (1)												1	
Trichoptera	15 (4)	1			2	7							5	
Tricladida	4 (2)							2		2				

Habitat suitability as a key aspect

Habitat suitability as a key aspect

Habitat suitability as a key aspect Differences in abundance aggregated

Mesotrophic waters (n=14)

strongly buffered mesotrophic pools (5)

mesotrophic pools (5)

shallow mesotrophic puddles (4)

Predictability and stability as a key aspect

Rewetting Increase retention of rainwater Decrease drainage

Water bodies in forest

- •Higher water table
- Stagnation
- Mobilisation of nutrients
- •Increase of *Glyceria maxima*

More variable and unpredictable environment

More groundwater influence cyclic, predictable environment

Life-history strategy

Bog pools

•Higher water table

Stagnation

•Less groundwater

More harsh and constant environment

Stress tolerators Synchronisers

Life-history strategy

Groundwater influence:

Stable, minerotrophic transitions (biodiversity hotspots)
Minerotrophic influence important for primary and secundary succession
Important driver for landscape heterogeneity

Restore regional groundwater is a promising restoration strategy

Rewetting bog remnants

Degradation Results from rewetting

Unraveling species-environment relationships Correlations Species traits

Life-history strategies Development Rationale

Applying Life-history strategies Field data Fundamental ecology (abundance-occupancy relationships) Applied ecology (rewetting)

Getting more out of your biodiversity data with life-history strategies

Problems 1. Many conditions 2. Many species

3. Causality?

Life-history strategies

- 1. Integrated response
- 2. Group species
- 3. Explain and predict

Causality Community ecology: underlying mechanisms Aggregation Restoration ecology: functionally complete

Getting more out of your biodiversity data

Single species - mechanisms - experiments Communities - descriptions - surveys

Strong points	Species approach
Aggregation	-
Causality	+++

Getting more out of your biodiversity data

Single species - mechanisms - experiments Communities - descriptions - surveys

Strong points	Species approach
Aggregation	-
Causality	+++

Getting more out of your biodiversity data

Single species - mechanisms - experiments Communities - descriptions - surveys

Thank you for your attention!

Verberk WCEP (2010) Life-history strategies: a fresh approach to causally link species and their habitat. In: Carlo F de & Bassano A (eds) Freshwater Ecosystems and Aquaculture Research. Nova Publishers, New York. ISBN: 978-1-60741-707-1

Verberk WCEP, Leuven RSEW, van Duinen GA & Esselink H (2010) Loss of environmental heterogeneity and aquatic macroinvertebrate diversity following large-scale restoration management. Basic and Applied Ecology 11: 440-449.

Verberk WCEP, van der Velde G & Esselink H (2010) Explaining abundance-occupancy relationships in specialists and generalists: a case study on aquatic macroinvertebrates in standing waters. Journal of Animal Ecology 79: 589-601.

Verberk WCEP, Siepel H & Esselink H (2008) Life-history strategies in freshwater macroinvertebrates. Freshwater Biology 53: 1722-1738. Verberk WCEP, Siepel H & Esselink H (2008) Applying life-history strategies for freshwater macroinvertebrates to lentic waters. Freshwater Biology 53: 1739-1753.

> Verberk W.C.E.P. (2008) Matching species to a changing landscape – Aquatic macroinvertebrates in a heterogeneous landscape. PhD thesis, Radboud University Nijmegen.

Matching species to a changing landscape Aquatic macroinvertebrates in a heterogeneous landscape

http://webdoc.ubn.ru.nl/mono/v/verberk_w/matcsptoa.pdf w.verberk@science.ru.nl