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Introduction

Abstract Knowledge about the spatial and temporal scales of both habitat use and the
functional significance of different adaptationsis essential for an understanding of the
population dynamics of invertebrate assemblages. This fundamental knowledge is not only
interesting from an academic point of view, but is sorely lacking and needed in the field of
restoration ecology. Many species are threatened due to degradation. Knowing what
environmental conditions are needed during the life cycle of these speciesisimportant in the
design of restoration measures which aim to lift existing bottlenecks for threatened species.
To assess the relative importance of water type and microhabitat in structuring the
invertebrate assemblage during different seasons, invertebrates were sampled in three water
bodiesdifferingintrophiclevel and acidity. Different partswithin awater body (microhabitats)
were sampled separately and each water body was sampled in al four seasons. Results show
that water body is an important factor structuring the invertebrate assemblage early in the
season, whereas microhabitat became more important later in the season. Structural
complexity of microhabitats wasrelated to the type of locomotion employed by invertebrates.
Seasonal differences could be related to population dynamics (reproduction, mortality).
Moreover, fluctuations in resource availability were expected to differ between the water
bodies, with highest fluctuationsin the eutrophic water body and with fluctuations becoming
less predictable later in the season. Thiswas confirmed by the data: species synchronization
to pulses in food availability was strongest in the eutrophic water body. Moreover,
synchronization was strongest in summer, while in autumn waters were invaded by
dispersive species. Based on these results a synthesis is presented on the functioning of the
different waters during the different seasons.
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wetlands are currently being threatened by habitat recla-
mation and habitat degradation, including desiccation,

Freshwater wetlands harbor a high biodiversity. Many
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eutrophication and acidification. To combat these threats
and restore biodiversity, knowledge is necessary on how
organisms use their surroundings. In general, individuals
of aspecies need to obtain resources and survive until they
have successfully reproduced. To succeed in this task
species possess adaptations that increase their chances
under specific conditions. In other words when aspeciesis
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present, there is a match between what a species needs and
what is supplied by the environment (Verberk & Essalink,
2003). The set of adaptationsis called a strategy. Accord-
ing to Southwood (1977) the environment is the template
on which these strategies are forged (i.e. the habitat tem-
plate concept).

Both species’ demands and environmental conditions
vary in space and time and therefore the match between the
two ishighly dependent on scale (Levin, 1992). Thisscale-
dependency is one of the main reasons that theoretical
predictions based on Southwood's habitat template may
fall (Statzner et al., 1997). Thisisespecidly truefor mobile
animals, which can use their surroundings on a range of
different scales, varying between species and life stages
(Beaver, 1977). In addition the relevant scale may be
different for anindividua compared to apopulation (Wiens,
1976). Therefore, it is not surprising that incorporating
scale hasled toimprovementsin model resultsand explain-
ing species occurrence. Li et al. (2001) showed that linking
the occurrence of aquatic invertebrates to environmental
factors was scale-dependant. Ritchie and OIff (1999)
showed that the relation between productivity and diver-
sity in grazing mammals was predicted more accurately
when they incorporated the scale level on which the differ-
ent species use the landscape. Chase and Leibold (2002)
showed that the relation between productivity and diver-
sity in aguatic invertebrates was scal e-dependent, having
an optimum on the scale of a single catchment, but being
linear when different catchments were combined.

To detect the appropriate scalg, investigations have to be
conducted at different spatial and temporal scales
(Sponsdller et al., 2001, Verberk et al., 2002). Research on
aquatic invertebrates has strongly focused on the scale of
water bodies, describing invertebrate assemblages and
creating water typol ogies (Ranta, 1985; Verdonschot et al .,
1992). These studies have related presence and abundance
of invertebrates to environmental variables that define
water bodies asaunit or represent an average value for the
whole water body (Fairchild et al., 2003). Examples of
such variables are site age (Fairchild et al. 2000), acidity
(Foster, 1995; Verberk et al., 2001), surface area (Oertli et
al., 2002; Ranta, 1985), permanency (Downieet al., 1998;
Jeffries, 1994; Williams, 1996; Wiggins et al., 1980) and
salinity (Lancaster & Scudder, 1987). However, water
bodies are rarely homogeneous and often consist of differ-
ent elements. These so-called microhabitats can differ
substantially in food availability (Henrikson, 1993), oxy-
gen saturation (Heinis & Crommentuijn, 1992), tempera-
ture (Sternberg, 1993), vegetation structure (Henrikson,
1993) and predator and prey abundances. These differ-
ences necessitate or enable invertebrates to survive by
switching between these microhabitats. Surprisingly little

isknown about how invertebrates use different microhabi-
tatsduring their life cycle, asonly few studies havefocused
explicitly on differences between microhabitats (Higler &
Verdonschot, 1989; Fairchild et al., 2003; Tolkamp, 1980).

Water bodies are not only heterogeneous in space, but
also in time. Abiotic conditions fluctuate throughout the
season due to litter input and also because temperature
fluctuates, influencing for example, mineralization rate,
oxygen consumption and primary production. In addition
to abiotic fluctuations, shifts occur in bictic interactions as
species increase in abundance due to reproduction or
change their feeding activity and diet, asthey grow larger.
To cope with these changesinvertebrates can move within
awater body (locomotion), move between water bodies
(dispersal) and time their lifecycle to coincide with favor-
able periods (synchronization). Locomotion is expected to
be adaptive at the scale of awater body, differentiating
between microhabitats. Dispersal and synchronization are
strategies, which confer adaptive benefits at larger spatial
and temporal scales, respectively. Synchronization is ad-
vantageous when it is possible to predict when favorable
periods will be present, while dispersal is most advanta-
geous when there are favorable locations present, but it is
hard to predict where they will occur (Van Leeuwen,
1966).

The aim of this study was to understand the spatia scale
of: (i) habitat use; and (ii) the functional significance of
different adaptations; (iii) in relation to seasonal changes.
Therefore we investigated invertebrate assemblages on
four occasions (every season) in the microhabitats of three
water bodies differing in trophic level and acidity. This
paper addresses the following questions:

1. What are the differencesin invertebrate assemblages
between different water bodies?

2. What are the differences in invertebrate assemblages
between different microhabitats?

3. Isthere aseasonal change in the effect of water body
and microhabitat on the invertebrate assemblage?

4. How are these changes rel ated to different adaptations
(locomotion, synchronization and mobility)?

Material and methods
Sudy area and sample locations

All three water bodies sampled were located in the bog
remnant Korenburgerveen in the Netherlands (described in
detail in Verberk et al., 2001). The three sampled water
bodies comprised a gradient from acidic-oligotrophic con-
ditions to more alkaline-eutrophic conditions (Table 1).
All water bodies had approximately the same age (created
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Table 1 Characterization of the aquatic vegetation (on a Tansley scale) and characterization of the physical and chemical conditions

of the three sampled water bodies.

Seasonal changesin invertebrate assemblages 265

Water body Peat Mesotrophic Eutrophic
excavation pit bombcrater bombcrater
Trophic status oligotrophic mesotrophic eutrophic
Surface water Mean alkalinity (mEq) 0+0 0.083 + 0.036 0.540 + 0.250
(+ SE.) (n=4)

Mean pH (+ SE.) (n=7) 3.85 + 0.13 526 + 0.34 5.84 + 0.35

Interstitial water Mean akalinity (mEq) 0.180 + 0.055 0.350 + 0.033 0.510 + 0.068
(+ SE.) (n=3)

Mean pH (+ SE.) (n=3) 5.15 + 0.28 5.84 + 0.18 593 + 0.35
Area(m?) 60 80 110
Depth (m) 1-15 1-15 1-15
Vegetation Eriophorum angustifolium Frequent

Sphagnum cuspidatum Dominant Occasional

Eriophorum vaginatum Co-dominant Frequent Sporadically

Utricularia minor Occasiond

Phragmites australis Loca Sporadically

Carex rostrata Local Abundant

Potamogeton natans Loca Co-dominant

Typha latifolia Frequent

Chara sp. Frequent

Juncus effuses Local

around 1945). The first water body was a former peat
excavation pit, with Sophagnum cuspidatum and Molinia
caerulea on the shore (hereafter called oligotrophic). The
other two water bodies were bomb craters and at their
location, cover sands reach the surface. As aresult these
water bodies were more alkaline. The meso-eutrophic
water body (hereafter called eutrophic) had the highest
alkalinity and the water was almost compl etely covered by
floating Potamogeton natans with Typha latifolia and
Carex rostrata on the shore. The oligo-mesotrophic water
(hereafter called mesotrophic) had a low alkalinity.
Potamogeton natans occurs locally in the water body and
Eriophorum vaginatum is abundant on the shores. In both
bomb craters Myrica gale and Molinia caerulea were
dominant in the surrounding vegetation.

Invertebrate collection

Invertebrates were collected during four sampling
periods, hereafter referred to as winter (February 5, 7 &
12, 2003), spring (April 1—3, 2003), summer (June 25—
27, 2003) and autumn (September 12, 15 & 19, 2003). In
each water body, different patches were sampled
separately. Based on the structure, these samples could be
classified into seven different categories of microhabitat
(Table 2). Care was taken to sample the vegetation only,
without sediment. The shoreline microhabitat is defined
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asthetransition between water and land and was sampled
to a maximum depth of 15 cm. The spatial scale charac-
terizing the samplesis approximately 1 m?. Some samples
were classified into two different categories of
microhabitat, as it was not always possible to classify
samples unambiguously. These samples were treated as
belonging to both categories for all analyses.

Samples were taken in a semi-quantitive way and were
aimed at obtaining a complete list of the invertebrates
present. Sample material was collected using a kitchen
sieve (mesh size of 1.0 mm) and dip net (mesh size of 0.5
mm). In most categories of microhabitat, both sieve and net
were employed, but some microhabitats were always
sampled with either the sieve (shoreline) or the net (open
water). Sampleswere sorted in the field using white trays.
This enabled the collection of additional material if prior
catcheshad yielded only few animals. Invertebrates smaller
than 1 mm are difficult to discern in the field. Therefore
differences in species composition as a result of differ-
ences in mesh size are expected to be minimal. Sampling
effort was kept equal for the different microhabitats at
approximately 4 man-hours sorting time, with the excep-
tion of open water, for which sampling and sorting took
lesstime (= 0.5 h). After thistime amost all discernable
individuals (> 1 mm) were collected. A full list of the taxa
found in this study and their ecology can be found in
Appendix 1.
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Table 2 Overview of microhabitats sampled in the three water bodies on the four sampling occasions.

Intricate Thin
and emergent Robust  Floating No
. complex vegetation emergent vegetation structure

Shoreline structure (Eriophorum, vegetation (Potamo- Bottom (open Tota

(Sphagnum)  Carex) (Typha)  geton) water)
Oligotrophic Winter 0 15 05 0 0 1.0 0 3
Spring 0.5 2.0 05 0 0 1.0 1.0 5
Summer 0.5 20 05 0 0 1.0 0 4
Autumn 0.5 20 05 0 0 1.0 10 5
Subtotal 15 75 20 0 0 4.0 2.0 17

Mesotrophic Winter 1.0 0 1.0 0 0 1.0 1.0
Spring 1.0 0.5 15 0 1.0 1.0 1.0 6
Summer 1.0 0 1.0 0 1.0 1.0 1.0 5
Autumn 15 0 0.5 0 1.0 1.0 1.0 5
Subtotal 45 0.5 4.0 0 3.0 4.0 4.0 20
Eutrophic Winter 1.0 0 1.0 1.0 1.0 1.0 0 5
Spring 1.0 0 1.0 10 1.0 1.0 0 5
Summer 1.0 0 1.0 1.0 1.0 10 0 5
Autumn 15 0 0.5 10 10 10 0 5
Subtotal 45 0 35 40 4.0 4.0 0 20
Total 105 75 95 4.0 7.0 12.0 6.5 57

Halves indicate samples were classified in two different types of microhabitat. 'no individuals found.

Data analysis

Samples were grouped according to water body and
microhabitat. To analyze how well thisimposed grouping
(either by water body or microhabitat) could discriminate
between samples, differing in species composition, we
calculated the distance between sample pairs for all pos-
sible combinations. Next, the degree of isolation was
calculated by dividing the average distance between samples
of different groups (water body or microhabitat) by the
average distance between samples of the same group. If the
grouping discriminated well between samples, distances
between pairsof sampleswill be smaller when both samples
are from the same group compared to the distance when
both samples are from adifferent group, resulting in ahigh
degree of isolation.

To calculate distances between samples reflecting dif-
ferences in species composition, a correspondence analy-
sis (CA) was performed using Canoco for Windows Ver-
sion 4.0 (Ter Braak & Smilauer, 1998) on Preston-trans-
formed (Preston, 1962) invertebrate abundance data of all
57 samples. Ordination scores on the first four axes
(reflecting the most apparent differences in species
composition) were used to cal culate the distances using the
formulaof Pythagoras (eg. 1). Axis scoreswere multiplied
by their eigenvalues to make the axes proportional to the
amount of variation explained by that axis.

D, = Square Root {[E1* (AL —AL,)|>+[E2* (A2, —A2,)]?
+[E3* (A3—A3,)|+[E4* (Ad—A4)]* }, (1)

with: Dy, = Distance between sample X and Y; Ei =
Eigenvalue of axisi; Aiy = Score of sample X on axisi.
The degree of isolation was calculated for all data com-
bined as well as for each season separately. To assess
whether the grouping of samples (according to water body
or microhabitat) discriminated well between samples (high
degree of isolation), we tested against the null-hypothesis
that there was no difference in average distances (within and
between groups), using a student t-test. The number of
possible combinations between sample pairsincreases with
the number of samples (# pairs = [(#samples) * (#samples-
1)]/2). Thecdculation of P-valueswas based on anumber of
degrees of freedom equal to the number of samplesminus 1.
Species turnover was investigated by classifying species
as new (not found in previous season), lost (found in previ-
ous season only) or remaining (found both seasons). Species
were thus classified for spring, summer and autumn (but not
winter, as no data on the previous season was collected).
To analyze species synchronization, for each season,
species were categorized as synchronizing or non-
synchronizing. Species were categorized using a range of
ecological literature aswell as best professional judgment.
Larvae and adults were categorized separately for those
species of Hemiptera and Coleoptera, which were aguatic
both as larvae and adults. Species were categorized as
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synchronizing species if their occurrence depends on the
time of the year (being specifically present or absent in one
or two seasons). Species without synchronization or for
those where information was lacking were assigned as
non-synchronizing, because synchronization is seen asa
specialization from the norm.

To analyze the relation between microhabitat use and
species locomotion, species were assigned to different
types of locomotion (swimmer, clinger, burrower, crawler
& skater), using the literature (Verdonschot, 1990) and
best professional judgment.

To analyze seasonal changes in dispersing individuals
(eerial mobility), specieswere classified as non-dispersive
(0), dispersive (1) or highly dispersive (2) using arange of
literature. Species dispersal ability was coded for each
season separately, as many species have adult stages (with
flight capability) restricted to certain seasons. Speciesfor
which data was lacking, but are known to have adults
expected to fly (dipterans, aguatic beetles) were coded as
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dispersive(1). A dispersa index (eg. 2) wascaculaed, ranging
between 0—1, weighted for the different classes (0, 1, 2):

Dispersal index = (N1+N2*2) / (NO+N1+N2*2), (2)

with NO = Number of species classified as non-dispersive
(0); N1 = Number of speciesclassified asdispersive (1); N2
= Number of species classified as highly dispersive (2).
The dispersal index reflects the degree of dispersal
within the assemblage, with higher valuesindicating more
dispersing individuals (1 & 2) or more highly dispersive
individuals (2). The dispersal index was calculated sepa-
rately for the different species groups (new, lost and
remaining) and averaged over the different seasons.

Results

Thethree different water bodies were clearly separated on
the second and third ordination axes (Fig. 1, Table 3).
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Fig .1 Ordination plot (CA) showing differencesin invertebrate assemblages between the different water bodiesfor the different seasons.
Axes 2 and 3 are shown, including the amount of variation explained by them (axis 1 explained 11.4 % of the variation). All samples
belonging to the same water body and season are connected to their centroid. Open centroid: winter and summer. Filled centroids: spring
and autumn. For reasons of clarity, winter and spring are shown separately (left) from summer and autumn (right).

Table 3 Average distancesin the ordination space between samples from the same and from different water bodies and their calculated
isolation value.

Winter Spring Summer Autumn All seasons
Average distance 0.4950 + 0.0757 0.5660 + 0.0979  0.3981 + 0.0706 0.7691 + 0.1275  0.6080 + 0.0473
within the same (n=12, (n=16, (n=13, (n=15, (n=586,
water body(+ S.E.) #pairs=19) #pairs=35) #pairs=23) #pairs=30) #pairs=500)
Average distance 0.9826 + 0.1253 1.1150 + 0.1189  0.7493 + 0.0899 0.9230 + 0.0976  0.9760 + 0.0497
between water (n=12, (n=16, (n=13, (n=15, (n=56,
bodies(+ S.E.) #pairs=47) #pairs=85) #pairs=53) #pairs=75) #pairs=1040)
Isolation 1.985%** 1.970*** 1.882%** 1.200 1.606***

Number of samples (n) and the number of possible combinations (#pairs) are indicated between brackets. Significant differences between
distances of both groups areindicated as: ***P < 0.001; **P < 0.01; *P < 0.05; NS, P > 0.05.
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Isolation values decreased later in the season, becoming
non-significant in autumn, indicating that differences be-
tween water bodies became |ess important in structuring
the invertebrate assemblage in autumn.

Conversely, the different microhabitats showed high
overlap in invertebrate assemblages (Fig. 2, Table 4).
Neverthe ess, agradient could be distinguished from struc-
turally complex microhabitats (shore, Sphagnum; left) to
structurally simple microhabitats (bottom, open water;
right). In contrast to the results for the water bodies,
isolation values increased in autumn, indicating micro-
habitat became more important in autumn in structuring
the invertebrate assemblage.

Specieslocomotion was rel ated to microhabitat use (Fig.
3). Specieswith high-speed locomotion were mainly found
in structurally simple microhabitats (e.g. swimmers),
whereas specieswith low speed locomotion (e.g. crawlers)
were mainly found in structurally complex microhabitats
(Sphagnum, thin emergent vegetation). Burrowers reached
highest numbers in the bottom samples and Sphagnum
vegetation. Skaterswere alwaysfound in low numbers and
seemed to be restricted to sheltered/vegetated surface parts
of thewater body and wererarely found (or observed) at the
surface of the open water. Structurally simple habitats
(bottom, open water) had lowest numbers of clingers.

Total number of species (Fig. 4) as well as number of
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Fig. 2 Ordination plot (CA) showing differencesin invertebrate assembl ages between microhabitats and seasons. Axes 1 and 3 are shown,
including the amount of variation explained by them. All samples belonging to the same microhabitat and season are connected to their
centroid. Open centroid: winter and summer. Filled centroids: spring and autumn. For reasons of clarity, winter and spring are shown

separately (Ieft) from summer and autumn (right).

Table 4 Average distances in the ordination space between samples from the same and from different microhabitats and their calculated

isolation value.
Winter Spring Summer Autumn All seasons
Average distance 0.8430 + 0.01412 0.8630 + 0.1390 0.4840 + 0.0730  0.5130 + 0.0790 0.6660 + 0.0510
within the same (n=12, (n=186, (n=13, (n=15, (n=56,
water body(+ S.E.) #pairs=8) #pairs=19) #pairs=11) #pairs=20) #pairs=305)
Average distance 0.8420 + 0.1293 0.9720 + 0.1330 0.6720 + 0.0980  0.9650 + 0.0990 0.9032 + 0.0530
between water (n=12, (n=16, (n=13, (n=15, (n=56,
bodies(+ SE.) #pairs=58) #pairs=101) #pairs=67) #pairs=85) #pairs=1235)
Isolation 0.9999 1.1257 1.3887 1.8802*** 1.3574***

Number of samples (n) and the number of possible combinations (#pairs) are indicated between brackets. Significant differences between
distances of both groups are indicated as: ***P < 0.001; **P < 0.01; *P < 0.05; NS, P > 0.05.
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Fig. 3 Percentageof individua swith different typesof locomotion
in the different microhabitats. Percentages are averaged over the
four seasons.
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individuals (data not shown) was highest in autumn. Spe-
cies turnover (lost and new species) was highest and
increased strongest during summer and autumn in the
mesotrophic and eutrophic water bodies. In contrast, spe-
cies turnover remained constant in the oligotrophic water
body. New speciesin summer were mainly synchronizing
(Fig. 5), and consisted mainly of larval stages of Odonata
known to have a synchronized lifecycle (Lestes sp,
Sympetrum sp), nymphs of Hemiptera (Corixidae, Nepidae
and several families of Gerromorpha) and larvae of Co-
|eoptera (predominantly Dytiscidae). The increase of new,
synchronizing species was strongest in the eutrophic water
body, followed by the mesotrophic water body and was
lowest in the oligotrophic water body.

Species capable of dispersal increased, being most abun-
dant in summer and autumn and least abundant in winter,
as shown by the dispersal index (Fig. 6). When looking at
the dispersal capacity of remaining, new and lost species
separately, it is clear that many remaining species become
mobilein summer and autumn (emergence to adult stage).
New species are usualy also dispersive species (= 50%)
and this was especially true in autumn, when this group
harbored most dispersive species. This indicates that in
autumn, thereis an invasion of dispersive species, includ-
ing anumber of highly dispersive species, such as Corixa
punctata, Hydroporus planus and Agabus bipustul atus.
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Fig .4 Number of lost (found in previous season only), new (not found in previous season) and remaining species (found in both seasons)

in the three water bodies during spring, summer and autumn.
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Fig. 6 Dispersal index (+ S.E.) of lost (found in previous season
only), new (not found in previous season) and remaining species
(found in both seasons) during the different seasons (averaged
over the different water bodies).

Discussion

Importance of microhabitat and water body in structuring
invertebrate assemblages

This study shows that differencesin invertebrate assem-
blages were related to both spatial scales: microhabitat and
water body. Invertebrate similarity between microhabitats
was higher compared to invertebrate similarity between
water bodies. Thiswould indicate that differences between
water bodies are more stringent than those between
microhabitats. However, four issues need to be considered
here: i) Therewere more categories of microhabitats (seven),
compared to water bodies (three), which will inevitably
lead to a more gradual description of the variation in
species composition; ii) Species exchange between differ-
ent microhabitatsis expected to occur much more frequent

than exchange between water bodies; iii) Different types of
microhabitat overlapped to some extent, which is partly
reflected in samples being categorized in two different
types of microhabitat; iv) Different developmental stages
were lumped together (except for specieswith both aquatic
larval and adult stages such as species of Hemiptera and
Coleoptera). This precludes finding migration to adiffer-
ent microhabitat during the development. For example,
final developmental stages of damselflies migrate to the
shore for ecdysis (Sternberg, 1999) and evidence for this
was also found in this study (data not shown). Also,
substrate preference of species may differ seasonally or
between different development stages, as was found in
lowland streams (Tolkamp, 1980).

Taking the above-mentioned issues into account, differ-
ences between microhabitats are expected to be more
important than indicated by the results. Furthermore, mi-
crohabitats became more important in structuring the in-
vertebrate assemblage later in the season, while differ-
ences between the water bodies became less important.
Differences between invertebrate assemblages of the dif-
ferent water bodies could be attributed to species known to
occur under different environmental conditions such as pH
(Verberk et al., 2001) and trophic conditions (Verdonschot
et al., 1992). However, understanding these differencesis
another matter. The different adaptations (locomotion,
synchronization and dispersal) studied here, were related
to the differences between water bodies and between
microhabitats and seasonal changes therein.

Locomotion

Despite high overlap in invertebrate assemblages be-
tween different microhabitats, there was a strong relation
between the structural complexity of microhabitats and the
locomotion of animals. The locomotion of aspeciesisthe
combined effect of morphological and behavioral
adaptations, which apparently reflects afunctional signifi-
cance on the scale of microhabitats. Assuming a general
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trade-off between maneuverability and locomotion speed
(Ribera & Nilsson, 1995), we can understand species
adapted to complex microhabitats will be vulnerable in
simple microhabitats (e.g., suffer from predation due to
low speed). Conversely, species adapted to high-speed
locomotion will be unable to exploit structurally complex
microhabitats. This provides an explanation to the distinct
invertebrate assemblagesin the different microhabitats in
autumn; With increasing densities, speciesinteractionsare
expected to become more intense, thereby increasing the
importance of structural differencesto evade for example,
predators and competitors.

Higler and Verdonschot (1989) also found arelationship
between the structural complexity of the microhabitat
(termed ‘mesh size’ in their paper) and the species
composition. Heino (2000) found habitat structure to be
more important than water chemistry in structuring the
invertebrate community. In lowland streams, Tolkamp
(1980) found invertebrates distinctly preferred a specific
substrate and he concluded that the small-scale spatial
variation in substrate composition of the streambed is essen-
tial for the existence of many stream invertebrate species.

Synchronization

Synchronization is an advantageous adaptation when: (i)
there are temporal fluctuations in resource availability
(e.g., food); and (ii) these fluctuations are predictable.
Food availability was different for the three water bodies as
differences in invertebrate assemblages between them
could be related to diet (data not shown), with relative
carnivore abundance and carnivore species richness de-
creasing from the oligotrophic to eutrophic water body,
which isin agreement with other studies (Leuven et al.,
1986; Verberk et al., 2002).

The number of synchronizing species was low in the
oligotrophic water body (Fig. 5). Oligotrophic, acidic condi-
tions present an extreme environment with few possibilities
of existence for species. Acidic conditionsinhibit decompo-
sition by micro-organisms (Kok & van de Laar, 1991;
Leuven & Wolfs, 1988; Roelofs, 1991) and low nutrient
conditions inhibit production by algae and higher plants
(Lamerset al., 1998). Therefore, food availability islow, but
constant (Moller Pillot & Buskens, 1990). Under these
conditions growth is dow, as speciesinvest much energy in
tolerating acidic conditions and in structures hard to
decompose; they build to last; for example incorporation of
lignin and tannin in plants and mosses or the high abundance
of large-bodied speciesininsects (Leuven et al., 1986).

In contrast, under more eutrophic, alkaline conditions,
where acid formation due to decomposition is buffered,
processes such as decomposition and production can
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progress much morerapidly. Indeed, aslakes become more
eutrophic, the ratio between dissolved organic carbon and
particulate organic carbon fluctuated greatly with season
(and depth), caused by intensive algal and bacterial growth
(Wetzel, 2001). Temporal fluctuationsin food availability
such as detritus and algae, but also—with sometime lag—
secondary production are therefore expected to be more
pronounced under these conditions. Results show species
turnover was higher in the mesotrophic and eutrophic
water body compared to the oligotrophic water (Fig. 4).
Especially in the (early) summer many species showed
synchronization (Fig. 5). In spring and early summer when
the temperature rises, decomposition isinitiated again after
along and stable period of minimal microbial activity due
to low water temperature. This givesrise to apredictable
pulse of food availability early in the year, resulting in
favorable conditions for growth. Later in the season,
however, temporal fluctuations in food availability are
expected to become less predictable.

Dispersal

Dispersal is an advantageous adaptation when there are
large-scale spatia differencesin resource availability. This
adaptation holds an advantage over synchronisation when
the location of these different places is unpredictable.
Under synchronization, it was already argued that fluctua-
tionsin food availability would be most predictable early
in the year. From the results of this study several other
arguments make it likely that autumn poses aless predict-
able set of environmental circumstances for invertebrates.
Environmenta circumstances and fluctuationstherein are not
limited to decomposition and production. Interactions with
other invertebrates make up an essentid part (Nemjo, 1990).

Highest numbers of invertebrates were found in autumn,
following the (synchronized) reproduction of many spe-
ciesin summer. The situation in autumn therefore depends
on success and failure of species reproduction, which is
very unpredictable, depending on occurrences of summer
droughts, temperatures and colonization of competitors
and predators (Moller PFillot, 2003).

Lowest numbers of invertebrates were found in winter.
One reason for this could be that winter mortality dueto for
example food shortage, cold and predation is no longer
compensated for by reproduction. An aternative explana-
tion for finding low numbers in winter samples could be
that many individuals were not recorded. Species can over-
winter on land, be present as minute larvae or even eggs, or
migrate to deeper parts of the water, burrowing in the
sediment. Either one of these explanations (mortality or
migration to over-wintering placesin deep water or outside
the water) or a combination would explain the lower
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invertebrate numbers during winter. Low invertebrate num-
bers means empty space and therefore the conditions at the
start of the year are comparable, providing al individuals
anew opportunity to colonize the vacant microhabitats. As
aresult, winter may act as a reset-button, with predictable
conditions early in the year (low densities of potential
competitors, predators, etc.). Autumn is the most unpre-
dictable season, because at this time, the most time has
passed since the ecosystem has been reset. Indeed in
autumn, dispersive species invaded the sampled water
bodies (categorized as new species). Many of these species
were dispersive aquati ¢ beetles which accounted for > 75%
of the total number of individuals in some microhabitats
(Verberk & Esselink, 2005).

Matching organism and environment

For aninvertebrate to successfully completeitslifecycle,
environmental prerequisites posed at different life stages
have to be met at the right time and have to be within reach.
To cope with discontinuities in resource availability and
inter-specific interactions, species have different adapta-
tions whose function is scale-dependent in space (e.g.,
small scale: swimming hairs; large scale: flight muscles)
and time (e.g., small scale: quiescence; large scale:
diapause). Unraveling the function of these adaptationsis
of vital importance for understanding and predicting
effects of environmental changes on invertebrate
assemblages. This fundamental knowledge is not only
interesting from an academic point of view, but is sorely
lacking and needed in thefield of restoration ecology (van
Duinen et al., 2003).

From the results of this study a general pattern of sea-
sonal changes is emerging: Synchronization has adaptive
value when there are predictable pulses in resource
availability. Pulses occur mainly in more alkaline waters
and these pulses are more easily predictable early in the
season (spring, summer). In spring, most species migrateto
different microhabitats from their over-wintering placesto
prepare for reproduction (ecdysis, oviposition). During
summer, larval offspring is found and growth takes place.
Following the reproduction in summer, highest densities of
species are found in autumn. As aresult, selection for the
best structuresis most intense and thus the different micro-
habitats harbor distinct invertebrate assemblages. Autumn
is also the most unpredictable season with respect to food
availability and the occurrence of predators and competitors,
benefiting species adapted to dispersal because they can
use the available resources opportunistically. In addition,
thiswill lead to a high mixing of species, decreasing beta-
diversity and resulting in an increased overlap of species
between the different water bodies (Fig. 1). Winter may

act as areset-button, due to mortality, dispersal to over-
wintering places or a combination of both. In a study on
dispersing diving beetles (Dytiscidae), Lundkvist et al.
(2002) observed two peaks in dispersal with females
being more common in the first period (April—July) than
during the second period (August—October), supporting
the idea postul ated here of directed migration in spring-
summer for reproduction and opportunistic dispersal in
autumn.

Knowledge on the function of adaptations isimportant
for identifying bottlenecks in the lifecycle of species:
Which different conditions are needed during the lifecycle
of aspecies? What adaptations do specieshaveto copewith
the opportunities and restrictions of their environment? If
speciesare no longer ableto completetheir life cycle, what
changes have caused this? This knowledge can be applied
inthe design of restoration measuresin order tolift existing
bottlenecks for threatened species.
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