Revisiting oxygen supply and demand
oxygen availability, metabolic rate and thermal limits
in aquatic ectotherms

Wilco C.E.P. Verberk (wilco@aquaticecology.nl)
David T. Bilton
Piero Calosi
John I. Spicer
Outline

Oxygen defined thermal niches

How much oxygen is available?

Oxygen and thermal limits in an insect

Conclusion
Oxygen defined thermal niches?

Mismatch oxygen supply and demand
- internal: circulation & ventilation
Oxygen defined thermal niches?

Mismatch oxygen supply and demand
- internal: circulation & ventilation
- external: double jeopardy?
Oxygen defined thermal niches?

\[O_2 \text{ demand} \quad \text{Temperature} \]

\[O_2 \text{ concentrations} \]

How much oxygen is available?
Solubility $\alpha O_2 \ (mol \cdot m^{-3} \cdot Pa^{-1})$
Partial pressure PO_2 (Pa)
Diffusivity \(DO_2 \ (m^2 \cdot s^{-1}) \)
Oxygen Supply Index (OSI) \((\text{mol} \cdot \text{m}^{-1} \cdot \text{s}^{-1})\)
How much oxygen is available?

\[\dot{M}_{O_2} = D_{O_2} \cdot A \cdot \frac{\alpha_{O_2} \cdot \Delta p_{O_2}}{L} \]

Oxygen Supply Index (OSI) \(\propto D_{O_2} \cdot \alpha_{O_2} \cdot \Delta p_{O_2} \)
How much oxygen is available?

Oxygen Supply Index (OSI) $\propto D_{O_2} \cdot \alpha_{O_2} \cdot \Delta p_{O_2}$

You tube: ‘ecology’ + ‘oxygen’
Oxygen defined thermal niches?
Oxygen and thermal limits in an insect

Stonefly, *Dinocras cephalotes*
Oxygen and thermal limits in an insect

Oxygen supply

Oxygen and thermal limits in an insect

324 measurements (before & after)
167 data points
52 individuals
Oxygen and thermal limits in an insect

$R^2 = 0.2427$

324 measurements (before & after)
167 data points
52 individuals
Oxygen and thermal limits in an insect

Sources of variation:
- temperature & body mass $Q_{10}(10-15)$

![Graphs showing metabolic rate (µg O₂ per hour) vs body mass (mg dry weight) at different temperatures: 5°C, 10°C, and 15°C.](image)

$r^2 = 0.157$, $r^2 = 0.222$, $r^2 = 0.534$
Sources of variation:
- differences in atmospheric pressure
- oxygen conformer
- individual

Oxygen and thermal limits in an insect

Metabolic Rate
(15 °C, bm contrast)

$r^2=0.261$

Metabolic Rate
(10 °C, bm contrast)
Oxygen and thermal limits in an insect

Oxygen and thermal limits in an insect

Conclusion

New perspective of aquatic (larval) stages

OSI reconciles viewpoints: \textit{solubility and }PO_2\textit{ }

More oxygen available in warmer waters

Implications:

• no double jeopardy

• solutions more feasible